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Abstract

The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by
a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equ
each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in ini
polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the po
tion are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the
mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propaga
polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the m
mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the aniso
mass and heat diffusion tensors.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Thermal degradation of polymeric materials is a con
quence of the fact that all organic macromolecules as
as low-molecular weight organic molecules are stable o
below a certain temperature threshold which is much lo
than that of many inorganic materials. Since molecules c
sist of atoms linked together by covalent bonds, and
strength of these bonds is limited, a high thermal sens
ity of organic substances can be explained at the molec
level because of the scissions of chemical bonds unde
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Transfer, April 2004, G. de Vahl Davis and E. Leonardi (Eds.), CD-RO
Proceedings, ISBN 1-5670-174-2, Begell House, New York, 2004.
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influence of heat are the result of overcoming the bond
sociation energies. Methodologies based on tracing the t
and-rate dependent thermochemical and viscometric pro
ties of polymers back to the origin at their molecular level
computationally costly and impractical for routine engine
ing applications [1]. On the other hand, analytical meth
fail in detecting chemical changes in polymers induced
their thermal degradation. Under these circumstances
development of macroscopic mathematical models which
corporate the nonlinear coupling between chemical kine
and heat transfer and allow for the prediction of therm
degradation as a function of space and time has becom
important and challenging engineering task [2].

In this paper, we propose a model for the curing of th
moset resins which is the key process in the manufac
of polymeric materials. These materials embrace a v
ety of applications including polymeric composites, el
tomers, thermosets, thermoplastics, polymer colloids, c

ings, films, polymer blends, and polymeric biomaterials. For
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example, thermosetting materials require more delicate t
niques at the processing stage than conventional the
plastics, but this is paid off by the fact that the result
materials are more stable in terms of creeping and so
ing at high temperatures. As a result, thermoset compo
are highly demanded in areas such as the encapsulati
computer chips, communication industry, biomedical ap
cations, etc. [3–5].

The curing of thermoset resins is a highly irreversible a
complex process which requires accounting for many
tures such as the molecular weight dependence of the s
relaxation modulus (which plays a paramount role in und
standing the effects of viscosity in polymers), the high s
sitivity of the viscosity on temperature, the non-Newton
rheological properties of the molten polymer, the genera
of high stresses which may contribute to material failure,
In this paper, we focus on the modelling and numerical s
ulation of the thermochemical properties of thermosets;
model developed here can be improved at a later stage b
cluding a model of the mechanical properties of thermo
and, in particular, the prediction of shrinkage during th
moset curing. Our main assumption is based on the fact
the behavior and properties of polymeric materials are de
mined largely by heat and mass transfer processes whic
turn, depend strongly on the degradation reactions. Sinc
polymerization kinetics in thermoset composites during
cure is a fairly complex process due to the fact that the
ing kinetics is determined by cross-linking and the dynam
of the heat generation response, we consider here a poly
ization kinetics model that takes into account the nonlin
coupling between heat and mass transfer, the anisotropi
fusion of both heat and monomer mass, and the quenc
of the reaction if the temperature is not high enough. Cur
models of thermoset curing include heat diffusion, assu
isotropic heat diffusion even in the case of composite ma
als, may consider the dependence of the thermal capac
specific heat with temperature, and account for the resin
or conversion by means of an ordinary differential equa
for the resin conversion rate which depends in a polynom
fashion on the resin concentration, but they ignore the r
diffusion and consider isotropic heat diffusion [2,6].

In this paper, resin diffusion is included, the thermal
pacity and the monomer mass and heat diffusivity ten
are assumed to be independent of the temperature, an
diffusion coefficients of both heat and monomer mass m
be anisotropic. The resin conversion rate during the cu
process can be obtained from the spatial integration of
mass balance equation which contains diffusion and a
linear reaction term that depends in an Arrhenius fash
on the temperature, while the energy equation contai
nonlinear term that is linearly proportional to the chemi
reaction rate and the total heat of reaction of the thermo
i.e., the heat of polymerization. The pre-exponential fac
and the activation energy of the reaction rate are assu
to be independent of both the resin concentration and

perature. As a consequence of these assumptions, the mod
-

f

s

-

t

-

r

e

for the thermal degradation of polymeric materials p
sented in this paper consists of two two-dimensional, non
early coupled reaction–diffusion equations for the resin m
concentration and the temperature of the thermoset r
which include anisotropic heat and monomer mass di
sion and are analogous to those appearing in the combu
of anisotropic solid media. The inclusion of resin diffusi
is novel in thermal degradation processes and account
mass transfer induced by concentration gradients, but
been neglected in the past because it was considered
a slow process and because of the absence of reliable d
sion data in polymeric materials, especially composite o
It should be pointed out that resin diffusion also takes pl
due to thermal gradients and that the gradients of the r
mass concentration also affect the heat diffusion in an a
ogous manner to the Soret and Dufour effects in coup
heat and mass transfer processes [7–9]; the effects of
thermal and mass gradients on mass and heat diffusion
spectively, are not considered in this paper. Furthermore
advective terms in the resin mass concentration and en
equation are neglected because of the small mass and e
Péclet numbers considered in this study. In addition, the
and monomer mass diffusion terms were considered t
constant, and the thermal capacity was assumed to be
pendent of both the temperature and the resin conversio
cure.

Studies of resin transfer molding processes that inc
advective terms in the energy conservation equation
the degree of curing, e.g., [10,11], assume that the res
an incompressible fluid, the velocity field of which is go
erned by Darcy’s law, i.e., the velocity field is proportion
to the pressure gradient and the proportionality factor
pends on the fluid dynamic viscosity and the permeab
tensor, and employ either ordinary differential equations
the curing degree [10] or transport equations for the ch
ical species [11]. These models do require a knowledg
the volume fraction and the permeability tensor which
usually determined from experimental measurements,
in some cases, are based on nonplausible assumptions
as the assumption of local thermal equilibrium between
solid and liquid phases. These models reduce to the one
ployed here whenever the thermal and Péclet numbers
small, i.e., whenever advection is much smaller than di
sion.

The paper has been organized as follows. In Sectio
we present the equations governing the heat and mass
fer processes that occur in the curing of resins. The r
tion kinetics employed in this section is rather simplifi
but contains the main ingredients that characterize com
tion, self-propagating high temperature synthesis, ther
autocatalysis, solid combustion, free-radical polymeriza
and epoxy curing processes [12–17]. As a consequence
formulation presented in the paper can be used to study
riety of processes different from the thermal degradatio
polymeric materials considered in this paper. In Sectio

ela detailed description of the numerical method employed to
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study the thermal degradation of anisotropic polymeric m
terials is presented, and, in Section 4, a rather detailed s
of the thermal degradation of anisotropic polymeric ma
rials is considered. Finally, a brief section summarizes
main conclusions of the paper.

2. Formulation

As stated in the Introduction, the objective of this study
to analyze numerically the two-dimensional thermal deg
dation of anisotropic polymeric materials by accounting
the diffusion of both heat and monomers. However, since
thermal degradation of polymeric materials is governed b
set of two nonlinearly-coupled reaction–diffusion equatio
and is, therefore, governed by the same type of equa
that characterize combustion, self-propagating high tem
ature synthesis, thermal autocatalysis, free-radical polym
ization and epoxy curing processes [12–17], we prese
general formulation which can also be applied to study th
processes.

Our main assumption is based on the fact that the be
ior and properties of polymeric materials are mainly de
mined by heat and mass transfer processes which depe
the degradation kinetics. However, since the thermal de
dation of polymeric composites during the cure is a comp
process due to the fact that the cure is determined by c
linking and heat generation, we have employed a simpli
first-order kinetics model and taken into consideration
diffusion of both heat and monomers. The model can
written in nondimensional form as

∂u

∂t
= ∇ · (D · ∇u) − R(u, v)

0< x < Lx, 0< y < Ly, t > 0 (1)

∂v

∂t
= ∇ · (K · ∇v) + qR(u, v)

0< x < Lx, 0< y < Ly, t > 0 (2)

wheret is time,∇u = ( ∂u
∂x

, ∂u
∂y

), x andy are Cartesian co
ordinates,Lx and Ly are the dimensions in thex- and
y-directions, respectively,R(u, v) is the reaction rate,q is
the heat of polymerization,u and v denote the mass con
centration of monomers and the temperature, respectiveD
and K denote the monomer and heat diffusion tensors,
spectively. These tensors are assumed to be symmetric
positive-definite in order to ensure elliptic behavior un
steady-state conditions. The components of these tenso
Dij andKij and are assumed to be constant, and the rea
rate can be expressed as

R(u, v) = αue−β/v (3)

whereα andβ are a Damkhöler number and the nondim
sional activation energy, respectively. Note that the form
tion presented here assumes that the thermal capacity an

monomer and heat diffusion tensors are independent of both
n

-

d

e

e

the temperature and monomer concentration. This assu
tion may not be a realistic one when considering the cu
of polymeric materials where the thermal capacity is kno
to depend on the temperature, e.g., [2,6], but, as stated a
our main objective in this study is to examine the effects
the anisotropy of the monomer and heat diffusion tens
on the thermal degradation of polymeric materials. Mo
over, the numerical method presented here can easily
dle the dependence of the thermal capacity on tempera
monomer concentration, space and time, and calcula
performed with more realistic, i.e., temperature-depend
specific heats or thermal capacities may be performe
the future. Furthermore, many studies on the curing of p
meric materials and frontal polymerization also assume
the specific heat is constant, e.g., [17–22], although ma
matical models of frontal polymerization involve initiatio
propagation and termination of the chain polymerizati
Initiation involves two steps; in the first one, the initiat
decomposes into two active radicals, while, in the sec
step, the radical species attach to their respective mono
to form live monomer radicals. In the propagation step,
monomer and the live monomer radical react and form
polymer chains. These chains continue to grow until t
live polymer chains of the same type attach to each othe
terminate the reaction. These kinetics processes are us
modelled by means of six ordinary differential equations
the initiator, primary free radicals, monomer concentratio
and the concentrations of the live monomer radicals of
ferent lengths, by means of Arrhenius-type equations [
By way of contrast, the kinetics employed in this study
thermal degradation of polymeric materials and compos
only involves a single-step overall chemical reaction wh
is of first-order in the monomer concentration, i.e., the re
tion rate is proportional to the monomer concentration
the proportionality constant is given by an Arrhenius expr
sion.

The reaction kinetics considered in this study is of fir
order in the monomer concentration and differs from t
employed in other studies which assumed that the con
sion of monomers [2], i.e.,G = 1− u, is governed by

dG

dt
= KGγ1(Gmax− G)γ2(1− G)γ3 (4)

whereK = K0 exp(−E/RT ), K0 is a constant,T is the di-
mensional temperature,R is the universal gas constant,E

is the activation energy and the exponentsγ1, γ2 andγ3 are
constant which are determined from experimental data.

A comparison between Eqs. (1) and (4) indicates that
latter accounts for the conversion of monomers by mean
an ordinary differential equation, but neglects the diffus
of monomers, whereas the former employs a more com
reaction kinetics than the latter. Note, however, that m
other researchers have also used a first-order polyme
tion kinetics albeit disregarding the diffusion of monom
in their studies of polymer curing [17], deprotection rea

tion of polymers and the diffusion of acids in chemically



738 E. Soler, J.I. Ramos / International Journal of Thermal Sciences 44 (2005) 735–755

sta
eir
riza
not

er-
er-
nd
ne-
ies
di-
ilar
hea

re
ntra-

ry.

re-

on,
m-
tion
12–
he-
the

iffi-
the

eat
alue

ons
ed i
13]
it is
e.

stud
r is
17].
t oc-
lled
r ex-

nd-
on-

ime
tial

s-

of

ts.
cti-

f the

r
e
s
a-
.,

-

ts.
nd
un-
the
raic
al-

per,

ical
l and
tion

iza-
be-

ented
amplified resists [24] and frontal polymerization [18]. Co
et al. [19] accounted for the diffusion of monomers in th
one-dimensional steady-state studies of styrene polyme
tion in tubular reactors, assumed that the polymer does
diffuse, considered a polymerization kinetics which is th
mally initiated and is terminated by combination, and a th
mal conductivity that is a function of the temperature a
monomer concentration, whereas Kosar and Gomzi [23]
glected monomer diffusion in their one-dimensional stud
of polyester thermosets curing in cylindrical-polar coor
nates, used an Arrhenius reaction rate model which is sim
to Eq. (4), and assumed constant thermal capacity and
conductivity.

In this paper, unless stated otherwise,Lx = 60,Ly = 20,
q = 200,α = 3.52× 10−2, β = 40, and the boundaries we
considered to be adiabatic for both the monomer conce
tion and the temperature, i.e.,

(D · ∇u) · n = 0, (K · ∇v) · n = 0, on∂D (5)

wheren denotes the unit outward normal to the bounda
As an example, the boundary condition foru at x = 0 is
D11

∂u
∂x

(0, y, t) + D12
∂u
∂y

(0, y, t) = 0.
The nondimensional values of the heat of reaction, p

exponential factor and activation energy, i.e.,q, α andβ, re-
spectively, employed in this study are typical in combusti
curing of polymeric materials, self-propagating high te
perature synthesis, thermal autocatalysis, solid combus
free-radical polymerization and epoxy curing processes [
17]. It must be noted, however, that, in some of these p
nomena, the pre-exponential factor may be a function of
temperature.

Initially, u(0, x, y) = 1 andv(0, x, y) = 0 which corre-
sponds to zero reaction rate, i.e., the cold boundary d
culty [12] has been avoided. However, in order to start
polymerization process, a source term,S(t, x, y) was added
to the energy equation in such a manner thatS ≡ 0 for
xBI > x, x > xSI, yBI > y, y > ySI, S = εt for 0 � t � tOFF
andxBI � x � xSI andyBI � y � ySI, S = ε(2tOFF − t) for
tOFF � t � 2tOFF andxBI � x � xSI andyBI � y � ySI, and
S ≡ 0 for t > tOFF, wherev(tOFF, x, y) = 12, i.e., tOFF is
the time at which the temperature within the compact h
source employed in this study exceeds a threshold v
equal to 12, andε = 1.2/20. Here,(xBI, yBI) = (5.1,10),
xSI = 5.4 andySI = 10.4.

The source term for starting the polymerization reacti
used in this paper is analogous to the heat sources us
combustion theory to simulate ignition phenomena [12,
and has compact support in both space and time, i.e.,
different from zero in a small spatial region for a finite tim
The heat source employed here can also be used to
stereolithography where polymer curing of the polyme
achieved by exposing small zones to laser irradiation [
In addition, as shown below, the temperature spikes tha
cur in the curing of polymeric composites can be contro
by exposing them to additional heat sources such as, fo

ample, laser irradiation.
-

t

,

n

y

3. Numerical method

Eqs. (1) and (2) were discretized by means of a seco
order accurate Crank–Nicolson method in time and the n
linear terms were linearized with respect to the previous t
level. As a consequence, the following linear elliptic par
differential equation was obtained at each time step

�U
�t

− 1

2
∇ · (Q · ∇�U) − 1

2
Jn�U

= ∇ · (Q · ∇Un
) + Sn

(
Un

)
0< x < Lx, 0< y < Ly (6)

where�t is the time step,U = (u, v)T, �U = Un+1 − Un,
J = ∂S

∂U , Un = U(x, y, tn), Q = ( D 0
0 K

)
is related to the dif-

fusion tensorsD and K, the superscript T denotes tran
pose, and the superscriptn denotes thenth time level, i.e.,
tn = n�t . In the results presented in this paper,�t = 0.01,
unless stated otherwise.

The linear elliptic Eq. (6) was discretized by means
central differences in an equally-spaced grid in thex- and
y-directions at both the interior and the boundary poin
The boundary conditions were implemented by using fi
tious grid points as follows. At the left boundary, i.e.,x = 0,
for example, the second-order accurate discretization o
boundary condition foru yields

u0,j = u2,j − D12�x

D11�y
(u1,j+1 − u1,j−1) (7)

where x = 0, y = 0 and y = Ly corresponds toi = 1,
j = 1 andj = NJ , respectively,NJ denotes the numbe
of grid points in they-direction,i = 0 corresponds to a lin
of fictitious points, and�x and �y are the grid spacing
in the x- andy-directions, respectively. Eq. (7) is applic
ble for j = 2,3, . . . ,NJ − 1. At the corner points, e.g
(x, y) = (0,0) and(0,Ly), i.e., (i, j) = (1,1) and(1,NJ ),
Eq. (5) implies that∂u

∂x
, ∂v

∂x
∂u
∂y

and ∂v
∂y

are nil and, there
fore, equations analogous to Eq. (7) demand thatu0,1 = u2,1,
u1,0 = u1,2 u0,NJ = u2,NJ , andu1,NJ+1 = u1,NJ−1. Similar
conditions apply to the other boundaries and corner poin

The discretization of Eq. (6) at the interior points a
at the boundaries together with the replacement of the
known values at the fictitious points in terms of those at
interior and boundaries provides a system of linear algeb
equations which was solved by means of the BiCGStab
gorithm [25]. In most of the results presented in this pa
the number of grid points in thex- and y-directions was
NI = 201 andNJ = 51, respectively, so that�x = 0.3 and
�y = 0.40. It must be noted, however, that many numer
studies were performed to assess the effects of the spatia
temporal step sizes on the results taking into considera
the heat supplied by the source to initialize the polymer
tion process, and that very few differences were observed
tween the results corresponding to�t = 0.01 and 0.001, and
grids which employed�x = 0.3 and 0.15, and�y = 0.40
and 0.20; thus, unless stated otherwise, the results pres

in this section correspond to�x = 0.3, �y = 0.40 and



E. Soler, J.I. Ramos / International Journal of Thermal Sciences 44 (2005) 735–755 739

d
rder
iter
use
ion

to
dif-

oly-
d in
of

nd
nd

fu-
pic
ion
pic,

er-
me

d to
ntial
n of
ec-

for
oly-

ases
nd 2
not
ond-
ffu-
nel
to
not
nd-
hing
all

and
hor-

me
here
d 2,
ase

p

3
ng
�t = 0.01. Moreover, the implicit, time-linearized metho
presented in this paper is (linearly) stable and second-o
accurate in both space and time, corresponds to a single
ation of the Newton–Raphson procedure, and has been
in numerous studies on two-dimensional reaction–diffus
equations [8,9,26–28].

4. Results

Many numerical simulations have been performed
determine the effects of the monomer mass and heat
fusion tensors on the thermal degradation/curing of p
meric composites. These simulations can be classifie
two main groups: those that account for the diffusion
monomers and those for whichD = 0. The first can be
further classified into five subgroups: isotropic heat a
monomer mass diffusion, orthotropic heat diffusion a
isotropic monomer mass diffusion, isotropic heat dif
sion and orthotropic monomer mass diffusion, orthotro
heat and monomer mass diffusion, and anisotropic diffus
where at least one of the diffusion tensors is anisotro
i.e., eitherKij or Dij is different from zero fori �= j . Or-
thotropic tensors are those for whichKij = 0 if i �= j and
K11 �= K22. Due to the large number of simulations p
formed (cf. Tables 1 and 2), we can only show here so
sample results. In addition, calculations were performe
determine the effects of the heat of reaction, pre-expone
factor and activation energy on the thermal degradatio
polymeric materials, as discussed in the following subs
tions.

4.1. Thermal degradation with monomer diffusion

Fig. 1 illustrates the temperature at selected times
the isotropic cases 1, 2 and 3, and indicates that the p
merization front propagates faster in case 2 than in c
1 and 3; however, the differences between cases 1 a
are small, thus indicating that the monomer diffusion is
very important for these two cases. The results corresp
ing to case 3 show that, due to the small thermal di
sion, it takes a long time to create a polymerization ker
which is initially very curved and takes quite a long time
propagate through the polymeric composite. Although
shown here, the curved polymerization front correspo
ing to case 3 becomes a nearly planar one upon reac
the top and bottom boundaries. It must be noted that in
the figures illustrating the two-dimensional temperature
monomer concentration profiles at selected times, the
izontal and vertical axes correspond to thex and y axes,
respectively.

Fig. 2 illustrates the monomer concentration at the sa
times as those of Fig. 1 and shows that, even though t
are substantial differences initially between cases 1 an
i.e., case 1 results in a faster polymerization front than c

2, these two cases exhibit nearly an identical behavior for
-
d

Table 1
Mass/monomerD and heatK diffusion tensors

Case D11 K11 D22 K22 D12 K12 D21 K21

1 1 1 1 1 0 0 0 0
2 0.1 1 0.1 1 0 0 0 0
3 1 0.1 1 0.1 0 0 0 0
4 0.1 0.1 0.1 0.1 0 0 0 0

5 1 1 1 0.1 0 0 0 0
6 1 1 0.1 1 0 0 0 0
7 1 1 0.1 0.11 0 0 0 0
8 1 0.1 1 1 0 0 0 0
9 1 0.1 0.1 1 0 0 0 0

10 1 0.1 0.1 0.1 0 0 0 0
11 0.1 1 1 1 0 0 0 0
12 0.1 1 1 0.1 0 0 0 0
13 0.1 1 0.1 0.1 0 0 0 0
14 0.1 0.1 1 1 0 0 0 0
15 0.1 0.1 1 0.1 0 0 0 0
16 0.1 0.1 0.1 1 0 0 0 0

17 1 1 1 1 0.5 0 0.5 0
18 1 1 1 1 0 0.5 0 0.5
19 1 1 1 1 0.5 0.5 0.5 0.5
20 1 1 1 1 0.5 0.5 0 0.5
21 1 1 1 1 0.5 0.5 0 0
22 1 1 1 1 0.5 0.5 0.5 0
23 1 1 1 1 0.5 0 0.5 0.5
24 1 1 1 1 0.5 0 0 0.5
25 1 1 1 1 0.5 0 0 0
26 1 1 1 1 0 0.5 0.5 0.5
27 1 1 1 1 0 0.5 0.5 0
28 1 1 1 1 0 0.5 0 0
29 1 1 1 1 0 0 0.5 0.5
30 1 1 1 1 0 0 0.5 0
31 1 1 1 1 0 0 0 0.5
32 1 1 1 1 0.5 0.1 0.5 0.1
33 1 1 1 1 0.1 0.5 0.1 0.5
34 1 1 1 1 0.1 0.1 0.1 0.1
35 1 1 1 0.1 0.5 0 0.5 0
36 1 0.1 1 1 0.5 0 0.5 0
37 1 1 0.1 1 0 0.5 0 0.5
38 0.1 1 1 1 0 0.5 0 0.5

39 0 1 0 1 0 0 0 0
40 0 0.1 0 0.1 0 0 0 0
41 0 1 0 0.1 0 0 0 0
42 0 0.1 0 1 0 0 0 0
43 0 1 0 1 0 0.1 0 0.1
44 0 1 0 1 0 0.5 0 0.5
45 0 1 0 1 0 0 0 0.5
46 0 1 0 1 0 0.5 0 0

Table 2
Heat of reaction, pre-exponential factor, activation energy and time ste

Case α β q �t

35 3.52× 10−2 40 200 0.01
47 7.04× 10−2 40 200 0.01
48 3.52× 10−2 30 200 0.01
49 3.52× 10−2 40 300 0.01
50 3.52× 10−2 40 200 0.005

times greater than aboutt = 600. On the other hand, case
results in an initially elongated polymerization front alo

the y-direction which propagates faster than those of cases
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row).

) and
Fig. 1. Temperature profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 1 (top row), 2 (middle row) and 3 (bottom
(The horizontal and vertical axes correspond to thex andy axes, respectively.)

Fig. 2. Monomer mass concentration profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 1 (top row), 2 (middle row

3 (bottom row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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row).
Fig. 3. Temperature profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 7 (top row), 8 (middle row) and 9 (bottom

(The horizontal and vertical axes correspond to thex andy axes, respectively.)
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1 and 2, but, later on, the resulting front propagates m
slower than in cases 1 and 2 due to a smaller thermal d
sivity.

Figs. 3 and 4 correspond to cases 7, 8 and 9, i.e.
thotropic diffusion tensors. Case 7 is such that the mono
mass and energy diffusion in thex-direction, i.e.,D11 and
K11, is ten times larger than those in they-direction, i.e.,
D22 andK22, while, in case 8, the thermal diffusion in th
y-direction is ten times larger than that in thex-direction.
These differences in the components of the diffusion ten
are clearly reflected in Fig. 3 which shows that the temp
ature profiles for case 7 present a bulge at mid-height,
at y = 10, indicating a faster penetration of the polymeri
tion front in thex–direction than in they one. On the othe
hand, cases 8 and 9 which have smaller thermal diffusio
thex-direction than in they one, are elongated along they

axis and advance slowly in thex-direction. Moreover, the
results presented in Fig. 3 show again that the magnitud
the monomer mass diffusion is not as important as tha
heat since there are very few differences between the re
corresponding to cases 8 and 9.

Fig. 4 indicates that, for case 7, the monomer conc
tration presents an advancing bulge along the middle o
domain, i.e., alongy = 0, that propagates quite fast along t
x-axis and reaches the right boundary of the domain ea
than the polymerization fronts corresponding to cases 8
9. In fact, the results presented in Fig. 4 show that almo

complete polymerization has occurred by aboutt = 600 in
case 7, whereas, in cases 8 and 9, the polymerization
is roughly located atx = 30 at the same time and exhibits
planar shape.

Although not shown here, case 6 results in a faster p
merization front than cases 8 and 9 due to the larger m
nitude ofK11. In addition, the results presented in Figs
and 4 which correspond to orthotropic diffusion tensors,
in accord with the principal directions of those tensors. I
easily seen that the eigenvalues of an orthotropic tenso
incide with the diagonal components of this tensor, and
principal directions are associated with thex and y axes.
By way of contrast, the eigenvalues of an anisotropic t
sor depend not only on the diagonal elements but also
the off-diagonal components of this tensor, and the pri
pal directions do not correspond to the coordinate axe
illustrated in Figs. 5 and 6 which correspond to cases 34
and 36.

Fig. 5 indicates that an almost complete polymerizat
has occurred att = 600 for case 35, but the polymeriz
tion front exhibits high curvature even after it reaches
right boundary. The results corresponding to case 35
indicate that, initially, an almost cylindrical polymerizatio
front propagates from the location where the heat source
ployed to start the polymerization is placed, but this fr
does not become a planar one after it reaches the top
bottom boundaries as it occurs in the isotropic cases
and 3 discussed above. On the other hand, the results c

sponding to case 34 show a slower polymerization front due
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) and

ottom
Fig. 4. Monomer mass concentration profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 7 (top row), 8 (middle row
9 (bottom row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)

Fig. 5. Temperature profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 34 (top row), 35 (middle row) and 36 (b

row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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row)
Fig. 6. Monomer mass concentration profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 34 (top row), 35 (middle

and 36 (bottom row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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to the smaller magnitude of the eigenvalues of the ther
diffusion tensor, and a planar front that forms an angle
less than 90 degrees with thex axis, whereas case 36 resu
in a slower front than case 34 and this front is inclined m
than 90 degrees with respect to the positivex axis. It must be
pointed out that the eigenvalues of the thermal diffusion
sors are 1.1 and 0.9 for case 34, and 1 and 0.1 for cas
and 36, and, therefore, the principal directions of this ten
form 45 and 135 degrees with the positivex axis for case 34
and 0 and 90 degrees for cases 35 and 36, respectivel
the other hand, the eigenvalues of the monomer mass d
sion tensor are 1.1 and 0.9 for case 34, and 1.5 and 0.
cases 35 and 36, respectively, and, therefore, the prin
directions of this tensor form 45 and 135 degrees with
positivex axis in case 34, and cases 35 and 36, respecti

The results presented in Fig. 5 indicate that an almost
nar polymerization front propagates along a direction wh
is inclined less than−45 degrees and more than+45 degrees
with respect to thex axis in cases 34 and 36, respective
whereas, in case 35, the front propagates mainly along
x axis but it has a smaller transversal component along
negativey axis. On the other hand, the monomer concen
tion profiles exhibited in Fig. 6 indicate that the monom
front is inclined at an angle of less than 90 degrees w
respect to the positivex axis; this front is almost planar a
aboutt = 600 in case 34, exhibits a large curvature in c
35 and shows some curvature in case 36, especially nea

top boundary. Fig. 6 also indicates that case 35 results in a
5

n

r
l

e

faster polymerization front than case 34 which, in turn,
hibits a faster front than case 36.

The results presented in Figs. 1–6 clearly indicate tha
monomer mass diffusion tensor does not have a profoun
fect on the polymerization front of isotropic and orthotrop
polymeric composites, but plays a key role in determin
the initial polymerization kernel and the initial stages of
propagation of the polymerization front in these material

4.2. Thermal degradation without monomer diffusion

In order to further examine the effects of the monom
mass diffusion tensorD on the polymerization of compos
ites, calculations were also performed withD = 0; these
calculations correspond to cases 39–46 of Table 1, and t
cases include isotropic, orthotropic and anisotropic ther
diffusion tensors. Note that most of the numerical st
ies on the curing of polymeric materials performed to-da
e.g., [2], have considered thatD = 0, and, therefore, a com
parison between results corresponding toD = 0 with those
for D �= 0 allows to determine the effects of the monom
mass diffusion on the thermal degradation of polymeric m
terials.

The results presented in Fig. 7 indicate that the polym
ization time increases as the magnitude of the off-diago
components of the thermal diffusion tensor is decreased
the polymerization fronts were found to be almost planar

cases 43, 44 and 45, and formed angles of about 90 and 45
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ottom
Fig. 7. Temperature profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 43 (top row), 44 (middle row) and 45 (b

row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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degrees with the positivex axis for case 43 and cases 44 a
45, respectively. On the other hand, case 46 resulted i
almost planar polymerization front. Furthermore, the res
presented in Fig. 6 show that very long polymerization tim
are required whenKii < 1.

The results presented in Fig. 8 show the monomer m
concentration at different times as well as the inclination
the polymerization fronts with respect to thex axis. Fig. 8
also indicates that it takes a long time to establish a p
merization kernel, whereas a comparison between the
sults corresponding to case 39 and case 1 indicates tha
monomer mass diffusion tensor plays an important role
determining the initiation of the polymerization reaction
the polymerization kernel and the initial stages of the pr
agation of the polymerization front, but the final stages
the polymerization are to a large extent independent of
monomer mass diffusion tensor and are mainly controlled
the thermal diffusion tensor.

4.3. Temperature spikes

Figs. 1–8 indicate that the temperature distribution
the monomer concentration are not uniform along they di-
rection. In addition, it has been found that spiking pheno
ena may be present in the temperature profiles. These s
are a consequence of the trapping of the heat generat
the polymerization process, and usually occur in the inte

of the domain, although sometimes they also occur very near
e

s
n

the boundaries. In order to illustrate the spiking phenom
we show in Figs. 9 and 10 the profiles ofu andv at y = 10
as functions ofx at three different times. Figs. 9 and 10 co
respond to cases 1, 2, 3, 5, 8, 13, 16 and 17 and case
33, 35, 36, 38, 40, 41, and 42, respectively, and show
the initial temperature profile evolves from the high temp
ature at the location where the heat source used to sta
polymerization is placed, with very little monomer conv
sion and exhibits spikes att = 400 for cases 1 and 2, where
no spikes are observed in case 3 at this time. Spikes ar
observed fort � 500 in cases 1 and 2 due to the format
of a polymerization front and the no-flux conditions for he
and concentration employed in this paper.

Fig. 9 and other results not presented here indicate
cases 16–18 present spike phenomena att = 400 of about
the same magnitude, i.e.,�v ≈ 10, but case 16 shows
higher temperature atx = 0 than cases 17 and 18. Althoug
not shown here, spiking phenomena characterized by ne
the same magnitude of the temperature peak andv(0,10, t)
at t = 400 as those of Figs. 9 and 10 were also obse
in cases 6, 11, 18–34, 37–39 and 43–46 and cases 8, 9
36, and 42, respectively. Cases 5 and 7 show a temper
spike at an earlier time, andv(60,10, t) was much smalle
thanv(0,10, t) at t = 600. The highest value ofv(0,10, t)
at t = 600 was slightly smaller than 5 for case 10, abou
for case 15, and about 3 for case 40.

Cases 12, 13, 35 and 41 show a temperature spike at <
400, andv(60,10, t) was higher thanv(0,10, t) at t = 600;
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row)
Fig. 8. Monomer mass concentration profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 43 (top row), 44 (middle

and 45 (bottom row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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in fact,v(60,10, t)− v(0,10, t) at t = 600 is about 40, 36, 4
and 42 for cases 12, 13, 35 and 41, respectively. As indic
in Table 1,K11 is much larger thanK22 for cases 12 and 1
and, therefore, heat is diffused at a much higher rate in tx

direction than in they direction.

4.4. Temperature and monomer concentration profiles

The nonuniformity of the temperature and monomer c
centration profiles are exhibited along they axis at different
times in Figs. 11–14. Fig. 11 correspond tox = 9.9 and in-
dicates that very large differences are observed inu andv

for cases 1, 2, 3, 5, 8, 13, 16 and 17 att � 500. In partic-
ular, att = 400, the highest peak temperature is associ
with case 5 and this is followed by case 13; both cases 5
13 exhibit a relative maximum in the temperature profile
the interior of the domain. Cases 8 and 16 result in alm
uniform temperature profiles att = 400 and their tempera
ture is higher than that corresponding to cases 1, 3 an
at this time. Both the temperature and monomer concen
tion profiles undergo large changes as a comparison bet
the results corresponding tot = 400 and 500 shows. How
ever, att = 600, the temperature profiles are almost stra
lines fromy = 0 to y = 20 characterized by the same te
perature at both boundaries for isotropic polymeric mater
and a temperature aty = 30 lower than that aty = 0 for or-
thotropic and anisotropic ones, except for case 3 that

shows a relative maximum in the temperature profile in the
n

interior of the domain. Similar results to those presente
Fig. 11 have been observed atx = 20 as shown in Fig. 12
which illustrates that, att = 600, cases 5 and 13 result
almost complete curing, and cases 1, 2 and 17, case 8
case 16 have a monomer concentration nearly equal to a
0.32, 0.58 and 0.68, respectively. Fig. 12 also shows
little conversion of monomers has occurred att = 600 for
case 3.

Figs. 13 and 14 illustrate the temperature and mono
concentration profiles atx = 9.9 andx = 30, respectively
along they axis at different times for cases 22, 33, 35, 36,
40, 41, and 42, show the nonuniformity of the temperat
profiles for anisotropic polymeric composites, and indic
that cases 35 and 38 are characterized by a relative maxi
in the temperature profile; the peak temperature is large
case 35 than for case 38, whereas the other cases e
more uniform and lower temperature profiles att = 400.

The results att = 500 presented in Fig. 13 are intere
ing for several reasons. First, case 35 still exhibits a r
tive maximum in temperature, whereas case 38 now sh
a relative minimum. Second, case 40 shows nearly a
polymerization/curing. Third, cases 22, 35 and 36 are c
acterized byv(9.9,20,500) < v(9.9,0,500), whereas the
opposite holds for cases 33 and 38. Fourth, the temp
tures for most of the cases presented in Fig. 13 are sim
at t = 600, except for case 36 which has a higher temp
ture and case 40 which has not started the polymerizatio

this time. Similar trends to those illustrated in Fig. 13 have
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Fig. 9. Nondimensional temperature profilesv(x,10, t) (top) and monomer concentrationu(x,10, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 1; dashed line—case 2; dashed–dotted line—case 3; dotted line—case 5;×—case 8;+—case 13;∗—case 16;
◦—case 17. (The horizontal and vertical axes correspond to thex axis andv or u, respectively.)

Fig. 10. Nondimensional temperature profilesv(x,10, t) (top) and monomer concentrationu(x,10, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 22; dashed line—case 33; dashed–dotted line—case 35; dotted line—case 36;×—case 38;+—case 40;∗—case 41;

◦—case 42. (The horizontal and vertical axes correspond to thex axis andv or u, respectively.)
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Fig. 11. Nondimensional temperature profilesv(9.9, y, t) (top) and monomer concentrationu(9.9, y, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 1; dashed line—case 2; dashed–dotted line—case 3; dotted line—case 5;×—case 8;+—case 13;∗—case 16;◦—case
17. (The horizontal and vertical axes correspond to they axis andv or u, respectively.)

Fig. 12. Nondimensional temperature profilesv(30, y, t) (top) and monomer concentrationu(30, y, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 1; dashed line—case 2; dashed–dotted line—case 3; dotted line—case 5;×—case 8;+—case 13;∗—case 16;

◦—case 17. (The horizontal and vertical axes correspond to they axis andv or u, respectively.)
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Fig. 13. Nondimensional temperature profilesv(9.9, y, t) (top) and monomer concentrationu(9.9, y, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 22; dashed line—case 33; dashed–dotted line—case 35; dotted line—case 36;×—case 38;+—case 40;∗—case 41;
◦—case 42. (The horizontal and vertical axes correspond to they axis andv or u, respectively.)

Fig. 14. Nondimensional temperature profilesv(30, y, t) (top) and monomer concentrationu(30, y, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 22; dashed line—case 33; dashed–dotted line—case 35; dotted line—case 36;×—case 38;+—case 40;∗—case 41;

◦—case 42. (The horizontal and vertical axes correspond to they axis andv or u, respectively.)
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; dotted
e—case
Fig. 15. Monomer conversion rate,CR, and energy,E, as functions of time. (Top: solid line–case 1; dashed line—case 2; dashed–dotted line—case 3
line—case 4;×—case 5;+—case 6;∗—case 7;◦—case 8. Bottom: solid line—case 9; dashed line—case 10; dashed–dotted line—case 11; dotted lin

12;×—case 13;+—case 14;∗—case 15;◦—case 16. (The horizontal and vertical axes correspond tot andCRor E, respectively.)
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also been observed atx = 30 as indicated in Fig. 14. Th
most noticeable feature of this figure is the relative m
mum and the relative maximum exhibited by the monom
concentration profile att = 400 for case 35, as well the e
fects of the anisotropy of the heat and monomer diffus
tensors on the temperature profiles and, especially, on
differencev(30,30, t) − v(30,0, t).

As stated before, the physics of the polymerizat
processes is governed by heat and kinetics phenomena
there are two competing requirements in this nonlinear c
pling, i.e., maximizing the degree of curing and minimizi
the temperature spikes. As shown in Figs. 1–10, the dyn
ics of the temperature spikes are intimately related to
conversion rate of the monomers, and one could try to c
trol the thermal spikes by exposing the polymeric compo
to additional heat sources such as, for example, laser
diation [17]. In fact, stereolithography is based on cur
polymers by exposing small zones to laser irradiation.

4.5. Monomer conversion rates and polymerization time

The integrals of both the monomer concentration (n
malized with respect to its initial value) and the temperat
with respect to space, i.e.,

CR(t) =
Lx∫ Ly∫

u(x, y, t)dx dy/

Lx∫ Ly∫
u(x, y,0)dx dy (8)
0 0 0 0
d

E(t) =
Lx∫

0

Ly∫

0

v(x, y, t)dx dy (9)

are exhibited in Figs. 15–17. Fig. 15 shows that the polym
ization is nearly identical for cases 1 and 2 and for cas
and 4; the latter show a less steep (temporal) gradient
the former on account of the smaller component of the t
mal diffusion tensor in thex direction for cases 3 and 4. Th
polymerization curves are nearly identical for cases 5
6, cases 7 and 10, and cases 8 and 9. Cases 5 and 6 e
smaller polymerization times than cases 7–10; cases 7
10 have conversion rates which are nearly parallel to th
of cases 5 and 6; cases 5, 6, 7 and 10 have a steepe
version rate and shorter polymerization times than cas
and 9.

Cases 12 and 13 are characterized by smaller poly
ization times than case 11 which, in turn, requires sma
polymerization times than cases 14 and 16. The conver
rate for case 11 is nearly parallel to that of cases 12
13, and these three cases have steeper conversion rate
cases 14 and 16. For the initiation model of the polymer
tion employed in this paper, it has been found that cas
does not result in any polymerization; this result is not s
prising in view of the fact that the components of the therm
diffusion tensor of this case are small and the compon
of the monomer mass diffusion tensor in thex direction is

smaller than that in they direction.
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ase 19;
ase 27;

—case
; dotted
Fig. 16. Monomer conversion rate,CR, and energy,E, as functions of time. (Top: solid line—case 17; dashed line—case 18; dashed–dotted line—c
dotted line—case 20;×—case 21;+—case 22;∗—case 23;◦—case 24. Bottom: solid line—case 25; dashed line—case 26; dashed–dotted line—c
dotted line—case 28;×—case 29;+—case 30;∗—case 31;◦—case 32. (The horizontal and vertical axes correspond tot andCRor E, respectively.)

Fig. 17. Monomer conversion rate,CR, and energy,E, as functions of time. (Top: solid line—case 33; dashed line—case 34; dashed–dotted line
35; dotted line—case 36;×—case 37;+—case 38;∗—case 39. Bottom: solid line—case 40; dashed line—case 41; dashed–dotted line—case 42

line—case 43;×—case 44;+—case 45;∗—case 46. (The horizontal and vertical axes correspond tot andCRor E, respectively.)
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ottom
Fig. 18. Temperature profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 47 (top row), 48 (middle row) and 49 (b
row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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The differences in conversion rates for cases 17–22
small, except at the beginning of the polymerization proc
and during the formation of the polymerization kernel. On
a polymerization front has been formed, the differences
tween the results corresponding to cases 17–22 are s
despite the differences in the off-diagonal components
the heat and monomer mass diffusion tensors in these c
Therefore, taking into consideration the time evolution
the monomer concentration and temperature, it may be
cluded that the conversion rate is nearly independent o
off-diagonal components of the heat and monomer mass
fusion tensors if the diagonal components of these ten
are equal to unity. A similar comment applies to the conv
sion rates for cases 23–28 and cases 29–34.

Case 35 shows a smaller polymerization time than c
37 and 38 which, in turn, exhibit a faster polymerization th
case 36. The conversion rate for cases 37 and 38 is n
parallel to that of case 35 and the conversion rates of t
three cases are steeper than that for case 36. This can
be justified by the smaller component of the thermal dif
sion tensor in thex direction for case 36 than for cases 3
37 and 38.

Cases 40 and 41 yield almost the same monomer
version rates and polymerization times. A similar comm
applies to cases 39, 43 and 46 which show longer p
merization times than and almost parallel conversion r

to those of cases 40 and 41. Case 39, in turn, results in a
l,

s.

in

shorter polymerization time and a steeper conversion
than case 42.

4.6. Effects of the heat of reaction, pre-exponential facto
and activation energy

In the results presented in previous paragraphs,q = 200,
α = 3.52× 10−2, β = 40, i.e., the heat of reaction, the pr
exponential factor and the activation energy of the chem
reaction were assumed to be identical for all the cases
sidered. In this subsection, we study the effects ofq, α, β

and�t for the same heat and monomer mass diffusion
sors as case 35 of Table 1, by varying one parameter
time as indicated in Table 2, and some sample results
presented in Figs. 18 and 19.

Fig. 18 shows that case 47 results in a faster polym
ization than cases 48 and 49 as indicated in the temper
profiles att = 400; the latter, in turn, result in a faster fro
than case 35, cf. Fig. 5. Therefore, the results presente
Figs. 5 and 18 indicate that, for the heat and monomer m
diffusion tensors of case 35, the pre-exponential factor
a larger effect on the polymerization front location than
activation energy and the heat of reaction att = 400; how-
ever, case 49 results in higher temperatures than cases 4
and 35 att = 400. Figs. 5 and 18 also indicate that the te
perature profiles att = 600 exhibit the same trends for cas

35 and 47–49, but case 49 results in the highest temperature.
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row)
Fig. 19. Monomer mass concentration profiles att = 400 (left column), 500 (middle column) and 600 (right column) for cases 47 (top row), 48 (middle

and 49 (bottom row). (The horizontal and vertical axes correspond to thex andy axes, respectively.)
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The results presented in Fig. 5 for case 35 and Fig
are in accord with the physics of a one-step chemical r
tion such as the one employed in this paper, for an incre
in either the pre-exponential factor or the heat of reac
and a decrease in the activation energy are expected t
sult in faster polymerization fronts. The results shown
these figures indicate thatα and β play a more importan
role in determining the polymerization time thanq, whereas
an increase inq results in larger temperatures than a sim
increase inα or a similar decrease inβ.

The effects ofα, β and q on the monomer concentra
tion profiles at selected times are exhibited in Fig. 6 for c
35 and Fig. 19. These figures indicate that cases 47–4
sult in faster polymerization fronts than case 35; cases 47
also result in smaller monomer concentration att = 600 than
case 35.

In order to emphasize the effects ofα, β, q and�t on
the thermal degradation of polymeric materials, we show
Figs. 20 and 21 the temperature (top) and monomer con
tration (bottom) at selected times alongy = 10 andx = 9.9,
respectively. These figures also illustrate the effects of
anisotropy of the heat and monomer mass diffusion ten
as functions of the aforementioned parameters.

Fig. 20 shows that, for the cases considered in Tabl
the results corresponding to�t = 0.005 are indistinguish
able from those corresponding to�t = 0.01, case 49 result
in less uniform temperature profiles than cases 47 an

at t = 400, cases 47–49 require less time to achieve almost
-

-

-

uniform temperature profiles than case 35 as indicate
t = 400 and 500, the temperature profiles are almost unif
at t = 600, case 49 results in higher temperature att = 600
than cases 35, 47 and 48, an almost complete polyme
tion can be observed att = 600 for case 47, case 35 has n
reached complete polymerization att = 600, and the larges
nonuniformities in the monomer concentration can be
served in cases 35, 48 and 47. Fig. 20 also illustrates tha
temperature and monomer concentration profiles att = 400,
500 and 600 alongx for y = 10 are monotonic function
of x and exhibit relative extrema atx = 0 andx = Lx . By
way of contrast, the temperature profiles alongy for x = 9.9
shown in Fig. 21 are not monotonic functions ofy and ex-
hibit a relative maximum which is also a supremum at ab
y = 10. Moreover, the temperature profiles shown in Fig.
are not symmetric with respect toy = 10 and exhibit rela-
tive minima aty = 0 andy = Ly . The temperature aty = 0
increases as time increases and is larger than that aty = Ly

at t = 600 for cases 35 and 47–49.
The asymmetry in the temperature profiles shown

Fig. 21 can also be observed in the monomer concentra
profiles exhibited in the same figure which shows that,
cases 47–50, the monomer concentration along they axis
for x = 9.9 exhibits relative extrema aty = 0 andy = Ly

but decreases in a monotonic fashion withy at t = 400, 500
and 600. This monotonic behavior can also be observed
case 35 att = 500 and 600, whereas cases 35 and 50 re

in monomer concentration profiles characterized by relative
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)
d

)
d

Fig. 20. Nondimensional temperature profilesv(x,10, t) (top) and monomer concentrationu(x,10, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 35; dashed line—case 47; dashed–dotted line—case 48; dotted line = case 49;×—case 50. (The horizontal an
vertical axes correspond to thex axis andv or u, respectively.)

Fig. 21. Nondimensional temperature profilesv(9.9, y, t) (top) and monomer concentrationu(9.9, y, t) (bottom) att = 400 (left column), 500 (middle column
and 600 (right column). Solid line—case 35; dashed line—case 47; dashed–dotted line—case 48; dotted line—case 49;×—case 50. (The horizontal an

vertical axes correspond to they axis andv or u respectively, respectively.)
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The results presented in this paper and, especially, t
illustrated in Figs. 18–21 clearly show that an accurate
diction of the thermal degradation of polymeric materials
quires an accurate knowledge of the pre-exponential fa
activation energy and heat of reaction in order to determ
accurately the polymerization times and the temperature
tribution and avoid high temperature gradients that may
sult in cured composites with large nonuniformities or res
ual stresses. The results presented here also indicate th
anisotropy of the heat and monomer mass diffusion ten
plays a paramount role in determining the initial polym
ization kernel, the polymerization front propagation, and
temperature distribution. Since the dynamics of the tem
ature spikes are intimately related to the conversion rat
the monomers which, in turn, is affected by the polymeri
tion reactions and the anisotropy of the heat and mono
mass diffusion tensors, one could try to control the ther
spikes by exposing the polymeric composite to additio
heat sources such as, for example, laser irradiation [17].

5. Conclusions

A second-order accurate, linearly-implicit, time-linear
ed finite difference method has been developed to study
thermal degradation/curing of polymeric composites in tw
dimensions as a function of the monomer/mass and
diffusion tensors for the case of a simple first-order polym
ization kinetics and an Arrhenius law that does not exh
the cold-boundary difficulty for the initial conditions em
ployed in this study.

It has been found that the monomer mass diffusion
sor does not play an important role in determining the fi
stages of the polymerization and the curing time for b
isotropic and orthotropic polymeric materials, although it
fects strongly the initiation of the polymerization kinetic
the formation of the polymerization kernel and the init
stages of the propagation of the polymerization front. Ho
ever, the anisotropy of the mass/monomer diffusion ten
plays a paramount role in determining the shape, direc
and velocity of the polymerization front if the thermal diff
sion tensor is also anisotropic. In this case, it has been fo
that, depending on the magnitude of the off-diagonal com
nents of these tensors, the polymerization front may exh
either a high curvature even after it has reached the top
bottom boundaries or a planar shape which is inclined w
respect to thex direction. The curvature and inclination
this front as well as the polymerization time are found
be very sensitive to the magnitude of the component
the monomer mass and heat diffusion tensors. Althoug
some cases, it was possible to draw an almost direct c
spondence between the principal directions of the ther
diffusion tensor and the orientation and propagation of

polymerization front, it was found to be nearly impossible
e

t

-

to draw a similar correspondence when both the mono
mass and heat diffusion tensors are strongly anisotropic
their components are of the same magnitude.
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